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Design of Linear Phase FIR Filter for
Minimum Number of Adders by Using MILP

M.Pratheba and P.SatheesKumar

Abstract:Linear phase Finite Impulse Response (FIR) filter are
widely used in digital signal applications such as speech
coding, image processing, multi rate systems. Although the
stability and linear phase is guaranteed, the complexity and
power consumption of linear phase FIR filter are usually
much higher than that of the Infinite Impulse Response (IIR)
filter which meets the same magnitude response specification.
Therefore many efforts have been dedicated to the design of
low complexity and low power linear phase FIR filter.The
proposed work is the design of low complexity  linear phase
FIR filter with optimum discrete co efficient. The proposed
algorithm is based on Mixed Integer Linear Programming
(MILP), efficiently traverses the discrete co efficient solutions
and searches for the optimum one that results in an
implementation using minimum number of adders. During the
searching process, discrete co efficient are dynamically
synthesized based on a continuously updated sub expression
space and most essentially, a monitoring mechanism is
introduced to enable the algorithms awareness of optimality.
Keywords:Linear phase FIR filter,MILP,Optimum discrete
coefficient,CSD

1.INTRODUCTION
Digital Signal Processing (DSP) techniques have been

increasingly applied in most engineering and science fields due to
the explosive development in digital computer technology and
software development. Digital filters are basic building blocks for
DSP systems. There are two types of filters Finite Impulse
Response (FIR) filters and Infinite Impulse Response (IIR) filters.
Since FIR filters possess many desirable features such as exact
linear phase property, guaranteed stability, free of limit cycle
oscillations, and low coefficient sensitivity, they are preferred in
most of the wireless communication systems and biomedical
applications. However, the order of an FIR filter is generally
higher than that of a corresponding IIR filter meeting the same
magnitude response specifications.

MOTIVATION OF THE WORK
FIR filters require considerably more arithmetic

operations and hardware components - delay, adder and multiplier.
This makes the implementation of FIR filters, especially in
applications demanding narrow transition bands, very costly when
implemented in VLSI (Very Large Scale Integration) Technology
the coefficient multiplier is the most complex and the slowest
component. The large number of arithmetic operations in the
implementation also increases the power consumption. In the
modern applications, such as military devices, wearable devices
and portable mobile communication devices, the portability and
low power dissipation play a very important role.
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To address the problem, considerable attention and efforts
have been made on reducing the complexities and power
consumptions for the DSP systems. The cost of implementation of
an FIR filter can be reduced by decreasing the complexity of the
coefficients and the complexity reduction includes reducing the
coefficient word length and representing coefficients in effective
form. One of the most efficient ways is to design filters with
coefficients restricted to the sum or difference of signed powers-
of-two values. This leads to a so-called multiplication-free
implementation, i.e. the filter’s coefficient multipliers can be
replaced by simple shift-and add circuits. Thus, the
implementation complexity can be reduced, resulting in significant
increase in the speed and reduction in power dissipation.

PROPOSED WORK
 To design a Finite Impulse Response (FIR) filter

with optimum discrete coefficients.
 To design a filter   structures with Multiplier less

technique using Mixed Integer Linear
Programming.

 To extend the above structure to reduce the number
of adders and power complexity.

LAYOUT OF FILTER DESIGN

Figure Flow Diagram
COEFFICIENT OPTIMIZATION

FILTER SPECIFICATION

The basic step in the filter design is the filter
specification. The filter specifications are
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2) Stop band frequency
3) Pass band ripple
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4) Stop band ripple
From the above specifications the filter co efficient are generated.

7.2 COEFFICIENT OPTIMIZATION
The co efficient optimization process consist of three steps .

 Sub expression space.
 Traverse of discrete solution using MILP.
 Detailed quantization process.

Sub Expression Space
Finite-Impulse Response (FIR) filters play a vital

role in modern communication system because of its versatility,
stability, and simplicity. As multipliers are generally agreed to be
a power-hungry device and occupy a large silicon area, the trend
toward the design of fixed-point FIR filters is to replace the
expensive multiplication operations by simpler additions and
hardwired shifters. The basic principle behind the design of FIR
filter for multiplier less implementation is to approximate each
filter coefficient with a minimal number of signed-power-of-two
(SPT) terms.

A common way of implementing constant multiplication
is by a series of shift and adds operations. If the multiplier is
represented in Canonical Signed Digit (CSD) form, then the number
of additions (or subtractions) used wil1 be minimum. In this method,
the co efficient optimization is done through the design of CSD
multipliers, and in particular the gains that can be made by sharing
sub expressions. In the case where several multipliers are present in
a network of operators, for instance in an FIR filter, the savings
achieved by identifying common sub expressions can be as much
as 50% of the total number of operators.

The asymptotic frequency of the most common sub
expression is analyzed mathematically, and it is shown that sharing
the two most common sub expressions can be expected to lead to a
33% saving of the number of additions.
Signed Power of Two Term

One of the most successful strategies is to optimize
the filter coefficients in signed power-of-two (SPT) space, where
each coefficient is represented as a sum of a limited number of
SPT terms. In this method, the filter complexity is determined by
the number of additions/subtractions required to implement the
multiplications, which, in turn, is directly related to the number of
SPT terms used to synthesize the filter coefficients. Thus, the
constrained optimization problem becomes one of finding a set of
filter coefficients with a minimal number of SPT terms that satisfy
a given magnitude response specification. A minimum
representation refers to a representation of a numeral that has the
minimum number of SPT terms. Thus the coefficient
multiplications can be replaced by shifters and adders, so that the
implementation of the filter is essentially multiplier less.

In mathematics, a power of two means a number of the
form 2n where n is an integer,  the result of exponentiation with as
base the number two and as exponent the integer n. In a context
where only integers are considered, n is restricted to non-negative
value, so we have 1, 2, and 2 multiplied by itself a certain number
of times.

Because two is the base of the binary numeral system,
powers of two are common in computer science. Written in
binary, a power of two always has the form 100…0 or 0.00…01,
just like a power of ten in the decimal system.

The two's complement of a binary number is defined as
the value obtained by subtracting the number from a large power
of two (specifically, from 2N for an N-bit two's complement). The
two's complement of the number then behaves like the negative of
the original number in most arithmetic, and it can coexist with
positive numbers in a natural way.A two's-complement system or
two's-complement arithmetic is a system in which negative
numbers are represented by the two's complement of the absolute
value; this system is the most common method of representing

signed integers on computers. In such a system, a number is
negated (converted from positive to negative or vice versa) by
computing its two's complement. An N-bit two's-complement
numeral system can represent every integer in the range −2N−1 to
+2N−1−1.The two's-complement system has the advantage of not
requiring that the addition and subtraction circuitry examine the
signs of the operands to determine whether to add or subtract. This
property makes the system both simpler to implement and capable
of easily handling higher precision arithmetic. Also, zero has only
a single representation, obviating the subtleties associated with
negative zero, which exists in ones'-complement systems.

SPT number characteristics and existing
optimization techniques for the design of digital filters subject to
SPT coefficients is shown below A number, S, is called an SPT
number, if it is represented to a precision 2Q by R - Q ternary
digits s (i) according to

S = ∑ s(i)2i,  s(i) € {-1,0,1},  Q≤i≤R-1, where i=Q to R-
1        (7.1)

Where R and Q are integers. Each nonzero digit
term, s (i) ≠ 0, is counted as a SPOT term. The word length of S is
(R-Q) bits. S is discrete values in increments of 2Q in the range, in
which there are 2R−Q+1 −1distinct values.

Similarly, a discrete sub expressions space can be
constructed by defining its element as,

n =∑ y(i)2q(i),    y(i)€ S, where i=0 to k-1
(7.2)

Where S is a set of permissible sub expression
bases. y(i)2q(i), is a shifted version of a sub expression basis,
named a sub expression term, and K is defined as the number of
sub expression terms.  Usually, a Sub expression basis refers to a
trinary string with more than nonzero digit, such as 1011 or
1001.
Canonic Signed Digit Representation

The Canonical Signed Digit (CSD) representation is one of
the most commonly used minimum representations in digital filter
coefficient synthesis. There exist a number of algorithms for
synthesizing CSD coefficients to minimize the number of SPT
terms that are required for the implementation of a low-
complexity FIR filter.An improved algorithm for the optimization
of FIR filter with SPT coefficient value is proposed, which
allocates an additional nonzero digit in the Canonic Signed-Digit
(CSD) code to the larger coefficients to compensate for the non-
uniform nature of CSD coefficient distribution. The two-stage
algorithm consists of search for an optimum scale factor and a
bivariate local search in the neighborhood of the scaled and
rounded CSD coefficients. It is illustrated that a significant
improvement in the frequency response can be obtained at the
price of minimal increase in filter complexity resulting from the
additional CSD Digits.Instead of the entire integer space, the
algorithm searches for the feasible solutions within the specified sub
expression space. The reduced searching space thus results in
significant time saving compared with the algorithm B&B. Instead of
being predefined, the sub expression basis set is dynamically
expanded and updated during the optimization procedure. Hence,
more useful basis sets are generated automatically and better results
are obtained.
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(a) (b)
Implementation of two coefficient multiplication.
(a) Each coefficient is independently implemented by

shifters and adders.
(b) Common sub expression of 101 is extracted and

implemented to be shared between two coefficients.
The number of adders to implement the FIR filter can be

further reduced by extracting common sub expressions from the
coefficients. The adders used to realize the common sub
expressions can be shared within a coefficient as well as among
coefficients. For example, when two coefficients with binary
numbers 100101 and 10101 are implemented independently, two
adders are required for each coefficient, as shown in Fig. 7.1(a).
Thus, in total four adders are used for the coefficients. If the
common sub expression of 101 is extracted and implemented first,
only an additional adder is required for each coefficient, ending up
with three adders in total, as shown in Fig. 7.1(b). Even in such a
simple example, an adder is saved.

Two’s complement arithmetic efficiently handles
the addition and multiplications of signed numbers. In DSP
filtering applications, coefficients are made up of both positive
and negative numbers. Depending on the applications data is
either positive or negative. Two’s complement arithmetic
efficiently handles the addition and multiplications of signed
numbers. The advantages of two’s complement are that we can
use the same hardware to add negative numbers and positive
numbers and the carry out is discarded. So first the Coefficient
firstly convert into two’s Complement then CSD Algorithm is
applied which convert the representation into maximum number of
non-zero terms.  A filter represented by a CSD code is called CSD
filter. The multiplication can be easily implemented by using CSD
code coefficients. The number of adders/sub tractors required to
realize a CSD multiplier is one less than the number of nonzero
digits in the CSD code .

The canonical signed digit (CSD) representation is one
of the existing signed digit representations. In addition the CSD
representation always results in a minimal and unique
representation. With the use of CSD the number of nonzero bits is
at most N/2, rounded to the nearest integer, compared with N bits
for the two’s complement representation. In a digital filter with a
fixed filter specification all multipliers may have constant
coefficients. A constant coefficient in CSD requires only the
number of partial products determined by the number of nonzero
bits in the coefficient. The asymptotic frequency of the most
common sub expression is analyzed mathematically, and it is shown
that sharing the two most common sub expressions can be expected to
lead to a 33% saving of the number of additions.

The canonical signed digit code (CSD) is a signed digit
representation with minimal Hamming weight, i.e., it has a
minimum number of ones, and contain no adjacent nonzero digits

.The conversion of a two’s complement number into CSD code is
done according to Table

b i+1 bi ci ai ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 -1 1

1 1 0 -1 1

1 1 1 0 1

Table Two’s Complement to CSD Conversion

The bi’ s are the bits of the two’s complement
number to be converted to CSD code and the ai’s are the CSD
code after the conversion. The ci is the carry generated in step i−1
and ci+1 is the carry out at step i, i.e., the carry used in step i+1
together with bi+1 and bi+2 to generate the CSD output digit ai+1.

Consequently, for multipliers with fixed coefficients the
number of partial products can be minimized in each multiplier.
For example, the two’s complement coefficient {0, 1, 1, 1, 1}
(decimal 15) is represented by {1, 0, 0, 0,−1} or {1, 0, 0, 0, 1}in
CSD. In this case the multiplication by 15 results in only two
partial products compared with four if the original two’s
complement representation is used. In a multiplier using CSD
code for a variable coefficient the number of partial products will
be the nearest integer to N/2, where N is the number of bits in the
coefficient. A multiplier with a variable coefficient of 5 bits
represented in CSD therefore requires three partial products.
Consequently, multipliers with constant coefficients may benefit
more from signed digit representation than a multiplier with
variable coefficients. To encode a two’s complement number to
CSD representation a carry has to propagate from LSB to MSB.
This carry propagation is generally the critical path of the circuit
performing the CSD encoding.

MIXED INTEGER LINEAR PROGRAMMING

The Mixed Integer Linear Programming (MILP) is
used to optimize the filter coefficient still further. Mixed Integer
Linear Programming is the technique employed to optimize the
filter coefficients to meet the given specifications. In this
technique, the frequency response ripple is minimized subject to a
given number of adders. The obtained results may not be the
optimum in terms of the number of adders, but the saving in the
number of adders can be achieved by using this technique is
significant compared with those obtained using other techniques
that can be used to design filters with respectable length and bit
width. The computation time needed to optimize a filter with order
60 and coefficient bit width 12 is typically within a few minutes to
a few hours.

Mixed Integer Linear Programming is capable of
traversing the entire discrete solutions efficiently for a given word
length, during the traverse the optimality of the synthesis of a set
of discrete coefficients is monitored and flagged by a  Certainty
whenever a new coefficient is discretized. In this manner, when
the traverse is completed then the algorithm is able to be aware of
whether an optimum solution is obtained. Major aim of this
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algorithm is capable of designing FIR filters with minimum
number of adders.

Linear programming (LP) is a mathematical
method for determining a way to achieve the best outcome (such
as maximum profit or lowest cost) in a given mathematical model
for some list of requirements represented as linear relationships.

More formally, linear programming is a technique
for the optimization of a linear objective function, subject to linear
equality and linear inequality constraints. Given a polytope and a
real-valued affine function defined on this polytope, a linear
programming method will find a point on the polytope where this
function has the smallest (or largest) value if such point exists, by
searching through the polytope vertices.

The general steps of the filter design problem using
MILP, are given as follows:

a. Formulation the filter optimization problem
b. Obtaining the continuous optimum solution
c. Choosing the effective word length (EWL)
d. Traverse of the discrete solutions

OPTIMIZING FILTER COEFFICIENT
For a given set of filter specifications such as pass band

edge, stop band edge, pass band and stop band ripple ratio, and
filter length N, the optimum continuous coefficients minimizing
the magnitude ripple can be found by formulating the problem as a
linear programming problem and this is given by

Minimize: δ subject to:
1- δ≤ H (ω) ≤ 1+δ                      for ω ε [0, ωp]

-δs δ / δp≤ H (ω) ≤ δs δ / δp for ω ε [ωs,π]
To find the coefficient values in a discrete space for

the same set of filter specifications, the linear programming
problem is replaced by a MILP problem. Branch and bound
algorithm is one of the most efficient techniques to solve MILP
problem. Branch and bound (BB or B&B) is a general algorithm
for finding optimal solutions of various optimization problems,
especially in discrete and combinatorial optimization.
CHOOSING EFFECTIVE WORD LENGTH

After the continuous optimum solution for the problem  is
obtained, all the filter coefficients are scaled up to be within a
certain effective wordlength (EWL). These scaled coefficients are
then to be fixed to discrete values during the traverse later.
Obviously, longer EWL results in less quantization error and
hence better frequency response. However, from the perspective
of low complexity, low power consumption, and high-speed
implementation, large EWL is usually undesirable. Therefore, in
this paper, we choose the EWL as small as possible provided that
feasible discrete solutions can be found within it.

TRAVERSE OF DISCRETE SOLUTIONS

This explains, roughly the traverse process of the
algorithm. Before commencing the traverse, it is beneficial to
know the lower bound hl

k and upper bound hu
k of coefficient h(k),

for  k=0,1,2…………..N-1. These bounds can be found by solving
the following linear programming problem:

Minimize; f = h(k)
Subject to : b - δ ≤ H(ώ) ≤ b+ δ , for ώ € [o,ώp]

-{ δs δ)/ δp ≤ H(ώ) ≤ { δs δ)/ δp, for ώ € [ώ s,л]
The above optimization finds the lower bound of

coefficient h (k), denoted as hl
k. To find the upper bound, simply

set the objective function to f = -h (n). Therefore, for N
coefficients, there are totally 2N runs of linear programming for
finding the bounds. The traverse process is then performed using
MILP to find the optimum discrete solution. Basically, the

traverse is a depth-first width-recursive search. Filter coefficients
are quantized to certain integers one by one according to the rules.
When a filter coefficient is quantized, the remaining unquantized
ones are reoptimized to compensate for the loss in frequency
response.

Thus the complexity of an FIR digital filter can be
reduced by quantizing its coefficients into SPT (Signed power of
two) values. This converts multiplication to simple operations of
shift and add. Relatively small chip area is required in VLSI
realization, resulting in low cost, high speed, and high yield.
ADVANTAGES OF MILP OVER LINEAR
PROGRAMMING

Here we are going for MILP, Since for any given
filter specifications, there is no known lower bound for the total
number of adders, in order the achieve the optimum synthesis, all
the feasible discrete solutions must be taken into account.  We
propose an algorithm that is capable of traversing the entire
discrete solutions efficiently for a given word length. What is of
more importance is that during the traverse, the optimality of the
synthesis of a set of discrete coefficients is monitored and flagged
by a certainty, whenever a new coefficient is discretized. In such a
manner, when the traverse is completed, the algorithm is able to be
aware of whether an optimum solution is obtained.

While the number of adders used to realize an FIR
filter is an important criterion of the implementation complexity,
the power consumption and circuit speed, on the other hand are
much more related to the Adder Depth (AD) of the filter .

AD is defined as the number of adders that the input
signal goes through before reaching the delay element. Obviously,
low AD is preferable for the concerns of low power consumption
and high throughput if the same numbers of adders are required.
Taking this into account, our MILP algorithm is also capable of
designing FIR filters using minimum number of adders under a
maximum AD constraint.

Mixed Integer Linear Programming is a considerable
field of optimization for several reasons. Many practical problems
in operations research can be expressed as linear programming
problems. Certain special cases of linear programming, such as
network flow problems and multicommodity flow problems are
considered important enough to have generated much research on
specialized algorithms for their solution. A number of algorithms
for other types of optimization problems work by solving LP
problems as sub-problems. Historically, ideas from linear
programming have inspired many of the central concepts of
optimization theory, such as duality, decomposition, and the
importance of convexity and its generalizations. Likewise, linear
programming is heavily used in microeconomics and company
management, such as planning, production, transportation,
technology and other issues. Although the modern management
issues are ever-changing, most companies would like to maximize
profits or minimize costs with limited resources.
QUANTIZATIONQuantization is the process of converting a
continuous range of values into a finite range of discreet values.
This is a function of analog-to-digital converters, which create a
series of digital values to represent the original analog signal. The
bit depth (number of bits available) determines the accuracy and
quality of the quantized value. Quantization has a number of
applications in digital image and audio production. Values can be
"rounded" to a commonly-agreed standard for simplicity.
FINDING THE APPROXIMATION OF A NUMBER IN SUB
EXPRESSION SPACE

Having the sub expression space constructed based
on a basis set, we wish to find the best approximation of a real
number using a sum of not more than K sub expression terms
y(i)2q(i), where y(n) is an element of the set of permissible sub
expression bases and q(n) is a non-negative integer. Let [x]k be
the K- term sub expression number that is a best approximation to
x. Since the number of elements in the basis set is limited, an
exhaustive search can be employed to find the combination of K



M.Pratheba and P.SatheesKumar 74

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISSN: 2320-9569) Vol. 3, Issue. 3, May-2013.

pairs of y(i) and q(i) which minimize the error between x and the
approximation.

When the order of the basis set and/or K are/is
increasing, exhaustive search becomes computational impractical.
A greedy algorithm for computing is proposed. In this algorithm,
initially, the approximation to [x]k, denoted as [x], is set to 0. Sub
expression terms are assigned to one at a time. At each time, the
sub expression term which can minimize the difference between
and is assigned to x.

The algorithm runs as follows
Step 1) Initialize m=1 and Z0=x

Step 2) Find y(m)2q(m) which minimized |z m-1 -
y(m)2q(m)|

Step 3) If either y(m) = 0 or m = k,go to Step 6; other
wise go to Step 4

Step 4) Update Zm=Zm-1- y(m)2q(m)

Step 5) Increment m.  Go to Step 2
Step 6) [x]k = y(i)2q(i). Stop

9.2 DYNAMICALLY EXPANDING SUB EXPRESSION
BASIS SET

A sub expression basis set is defined as a set that
contains zero and odd-valued integers. The order of a sub
expression basis set is defined as the number of adders that is
required to realize the elements in the set. For instance, the order
of the sub expression basis set S2 = {0, ±1, ±5, ±7} is 3. Here, it is
assumed that if a positive odd number is realized, its negative
value is automatically realized and the elements 0 and ±1are
always included. Therefore, for expository convenience, we omit
the negative values and 0. Thus, the above sub expressions basis
set is simplified as{1,3,5,7} .During the traverse process of the
algorithm, each node is associated with a sub expression basis set,
and the sub expression basis sets are updated dynamically. When
the traverse searches forward along a path with more and more
coefficients being quantized to integers, the sub expression basis
set expands, while the search is traced back to a coefficient, the
original basis set of that coefficient is recovered.

RESULTS AND DISCUSSIONS
SIGNED POWER OF TWO (SPT) COEFFICIENT
OUTPUT

NORMAL FILTER DESIGN

Synthesis Report

Normal Filter Design

FILTER DESIGN USING CSD

Synthesis Report

Filter Design Using CSD
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FILTER DESIGN USING MILP
Synthesis Report

FILTER DESIGN USING MILP
CONCLUSION

The technique of sub expression has the potential of effecting
significant savings in the numbers of additions used in the
implementation of FIR filters.  It has been observed that other
techniques utilizing common sub expressions in coefficient
representations other than CSD may on occasions lead to fewer
adders, and in general can achieve similar savings. Preliminary
studies have showed that only a limited number of SPT terms are
required to meet a respectable set of specifications if a good
optimization technique exists. Hence, to represent the coefficients
of a filter in this way, the coefficient multipliers can be replaced
by a small number of add/subtract-shift operations. The hardware
complexity   is thus largely reduced. By using MILP adder usage
is further minimized.
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