
Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 12

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

Simulated Heterogeneous Processor Scheduling
for Balanced Job Allocation

Harpreet Kaur, Ankit Arora, Gursharanjit cheema

 Abstract: Parallel scheduling a task of utilizing
multiprocessor hardware to formulate balanced system load
and increased system viability. Policies to schedule parallel
applications performs tremendous amount of distribution
efforts in order to perform task placement and adjustment.
Task adjustment basically a fine-tuning of system running
state, where stabilizing load is the key factor to system
increased throughput and consistent feasibility. Dynamic
scheduling, an ability to evaluate processor characteristics and
workload characterization, an ongoing measurement process to
consistent workload distribution. This research towards
processor frequency measurements, considered to make
balanced load distribution, rather than consuming efforts for
task adjustment later after distribution. Cycle based metric
provides measurement as no. of cycles spent in one unit time by
the processor. In heterogeneous processor
interconnection/organization where this measurement will
carries a great aspect of real-life parallel application
characterization. Further the research will carries a
heterogeneous multiprocessors typically a single core
simulated job assignment with frequency estimation.

Keywords: Balanced Job Allocation, Heterogeneous
Multiprocessor Simulation, Load Consistency, Processor Cycle
Speed,

I. INTRODUCTION
 Parallel processors usually based on single core
homogeneous system but in reality high complex
applications has varied amount of load and processing
modules i.e. their capabilities and capacities are different.
Therefore mapping of such real applications over
homogeneous parallel interconnection is a static aspect of
distribution. Each application controlled by any available
processor regardless of measuring their underlying capacity
and task size. Load distribution among homogeneous
interconnection system will not get benefit of workload
characterization, so heterogeneous interconnection system
provides a way to stabilize load among processor’s efficiency
and capacity corresponds to task requirements [1]. Processor
efficiency measurements basically a field under which
processor stress will be estimated, after a long duration due to
complex data processing or computation, the efficiency may
degrades. This is the point at which load

Harpreet Kaur, a student of engineering presents this material on the behalf of
research thesis Email: hbuttar55@yahoo.com. Ankit Arora, Assistant Professor
in LLRIET, Moga Pb India, internal thesis guide,
Email:ankitrajan11@yahoo.com. Gursharanjit cheema, Assistant Professor
LLRIET, Moga Pb. India provides his well known cooperative assistance to
thesis work, Email: cheema_303@yahoo.com.

balancing will takes place. Under this scheme, the idea is to
distribute the load of high stressed processors over stress free
processors. These methods will carry huge amount of efforts
because at level one the load will be distributed and later at
level two the load will be adjusted, so large no. of context
switching operations will be the result. In this scheme, the
efforts of load adjustment will be reduced. Concentration is
on balanced load assignment during job distribution rather
than level two process, which is not required. Due to
unbalanced load scheduling, jobs are distributed among
numerous processors, also improper consumption of
resources. Maximum effort should have to perform for
fine-tuning the overall operations with minimum change in
process address space, very tricky aspect of OS scheduling
that consume number of processor’s cycles. Further
Multicore processor’s can be programmed via this dynamic
factorization. The core can be further of homogeneous speed
or they can be heterogeneous, to cover the intermediate load
balancing .so, heterogeneous clusters can be organized to
make cloud oriented services where applications demands a
particular set of resources. That’s why the demand for
increased heterogeneity in computing systems is reasonably
due to the need for high-performance, highly reactive
systems that interact with other environments (audio/video
systems, control systems, networked applications) etc.

II. OBJECTIVE
 Objective under processor frequency estimation is to
perform task distribution according to processor cycle speed
and processing load. In other words, measuring existing load
of each processor in the communication along with their
speed and finds intended processor, which is a key
component of new task assignment. Key-Processor, which
requires minimum no. of cycles for its existing and new
workload ready to be assigned. This processor will be more
efficient and effective in current scenario. The main aim of
this research is to balance the workload over the processors.
Load will be balanced via proper distribution of jobs to the
processors. Unbalanced load assignment refers that some
processors have vast amount of processing deeds and other
processors may become idle. In general processor load will
define the processor stress, managing stress in
multiprocessor is a critical task. Stress can be managed
during allocation, a ongoing process that will measure the
processor stress in terms of load given and assign new
workload to it if having capacity to adapt. So task placement
if performed accurately ultimately the stress will be balanced
among processors. Other wise, task requires reallocation.

Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 13

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

III. LITERATURE REVIEW

 Many of the existing literatures implements static
multi-processor scheduling covering predefined parametric
factors [2]. Other literature describes moldable and malleable
demand allocation where processor demands are adjusted to
current processor availability. Literature around
multi-computer cluster interconnection analyzes behavior of
parallel algorithms with divide and conquer approaches.
Such literatures illustrates several difficulties occurred
around network data transmission and communication
delays. Synchronization will be crucial aspect in network
clustering. Scheduling over heterogeneous processor plays
critical role in modern real applications where each task may
demand different set of resource requirements in parallel
execution interval. Capabilities are varying, load balancing
with dynamic job allocation policies along with workload
characterization is an essential part of multiprocessor
distribution. Other research related with parallel processing
is bounded buffered scheduling schemes along with
homogeneous interconnection. Processor availability width
is mapped to frequently arrived jobs along with limited buffer
space with the aim of increased throughput. Current research
takes care of dynamic scheduling around processor frequency
estimation with the aim of consistent load allocation. This
method can be further analyzed with core processor
technology in heterogeneous multi-core multi-processor
systems. Simulation theory around previous research shows
logically programmed multiprocessor scheduling
arrangement having n number of processors and m number
of jobs. The scheduler allocates multiple jobs to single
processor or single job to multiple processor. Each job has its
CPU burst cycle. Improper distribution of job lead to the
unbalanced load among processors

IV. ARCHITECTURAL LAYOUT

 Architectural layout behind processor interconnection
incorporates heterogeneous multi-processors along with
discrete frequency speed. The application varying length of
modules can be easily mapped with heterogeneous structures.
Following is the general structure of underlying processor
architecture. Simulation structure follows logical layout
described in fig 1 for processor interconnection where
random distribution will be used for workload generation.
The generated workload is then distributed to the processor
with frequency estimation metric by measuring existing
processor load. Synchronized multithreading environment is
created in visual basic 6.0 programming language.
Periodically, existing load will be estimated during each job
assignment and processor index will be computed to which
the current assignment must take place .

V. ALGORITHMIC FLOW
 Algorithmic structure follows cycle speed estimation for
each processor i.e. no. of cycles or capability of cycles that the
processor has elapsed in one second. Fig 2 describes
complete control flow chart. This algorithm is completely
different from other algorithmic structures incorporates
static behavior etc.

Fig 1: Architectural Flow Model

Fig 2: Algorithmic Flow

Go To Step-1 for Next Allocation

Processor -1

Load Distributor

Freq-Speed
Processor

status
Data/Queues

Processor -2

Freq-Speed
Processor

status
Data/Queues

Processor -n

Freq-Speed
Processor

status
Data/Queues

Distribution
Policy Metric

Data

Workload
organizer

Sy
nc

hr
on

iz
ed

 In
te

r-
th

re
ad

 C
om

m
un

ic
at

io
n

N
et

w
or

k

M
ul

tip
le

 P
ro

ce
ss

in
g

Th
re

ad
s

1

2

3

Ta
sk

W

or
kl

oa
d

R
ea

dy
 to

PF
re

q
Sp

ee
d,

Ex

is
tin

g
PL

oa
d

Workload
Repository

Start

Set P  1

P <= N

Total_Load[P]  ExistLdCycle(P) + GetCTaskWLd(PID)
Time_Req[P] Total_Load[P] * (1/Freq_Cycle[P])
P  P+1

P_Index  Min (Time_Req)
Allocate (T1, P_Index)

1

2

4

Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 14

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

N is the number of processors in the communication. Each
Pth processor has existing load in terms of tasks assigned and
each task has CPU burst cycle. For N processors the
complexity order will be O(N). For each Pth processor
complexity metric for existing load computation is–

Eload [P]= 






 


][_

1
]][[

PLengthQueue

i
iPycleTaskWLoadC (1)

Tload [P] = Eload [P] + CTaskWLoad (2)

T_Req [P] = 









][_

1*][
1 PCycleFreq

PEload
N

P

 (3)

VI. LOAD ADJUSTMENT POLICIES
 The approach above defined provides many benefits than
load adjustment policies. Adjustment policies basically takes
care of tasks previously assigned, In this tasks are reassigned
to processors via some load balancing schemes includes
efforts to balance load among them rather than performing
any computation intensive work [3][4]. Despite of this one
another approach which considers dynamic processor
characteristic and workload characterization during
workload assignment rather than readjusting later at
unbalancing check-points [5]. In the previous one statically
load is distributed and later steadiness will be provided
when required with the aim that the stage for load balancing
when happen only then the recovery schemes will be adopted
rather than incorporating additional efforts from the very
beginning when execution starts. Parallel processing, where
vast amount of computation and data intensive applications
arrived then such situations are happened very frequently
and requires immediate prevention schemes to maintain
system steady state [6]. Despite of load adjustment to balance
system steady state after load allocation, stress management
policies may be adapted for multiprocessors. Processor
efficiency measurement will provide dynamic aspect to
enhance performance degradation Processor utilization
with in one particular duration period will inspire to manage
load balancing issues. If the load distribution is performed
after computing processor stress then it will be a balanced
load allocation and does not requires task adjustment plans.

VII. RESULTS AND DISCUSSIONS
 Simulation Results predicated is the outcome of different running
scenarios integrating random workload. Illustration produced
exhibits steadiness in workload distribution is performed up to very
large extent. The samples collected will be based upon different
time barrier points. These points are basically the timing
checkpoints where simulation working is stopped to get current
status of the running scenario. The simulated view is described
further containing fifteen heterogeneous processors asynchronously
behaved like MIMD processors. Each processor has its own
working clock frequency by which the load will be distributed as
described above in the literature.

I. Simulation Status at Time-25

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 0 0
3 1 GHZ 0 0
4 1.6 GHZ 1537 1
5 2.2 GHZ 3406 1
6 2.7 GHZ 3713 2
7 3.2 GHZ 2827 1
8 3.7 GHZ 4927 1
9 4.2 GHZ 4803 2
10 4.8 GHZ 7649 3
11 5.4 GHZ 9387 2
12 6 GHZ 12809 3
13 6.5 GHZ 9344 2
14 7 GHZ 11485 3
15 7.6 GHZ 15849 4

Distribution Graph at Time 25

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (C
yc

le
s R

eq
ui

re
d)

Fig 3: Distribution Graph-1

 II. Simulation Status at Time-50

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 0 0
3 1 GHZ 1704 1
4 1.6 GHZ 2323 2
5 2.2 GHZ 4954 3
6 2.7 GHZ 6109 3
7 3.2 GHZ 6888 4
8 3.7 GHZ 7942 3
9 4.2 GHZ 8958 4
10 4.8 GHZ 13153 5
11 5.4 GHZ 13198 4
12 6 GHZ 15987 5
13 6.5 GHZ 16187 5
14 7 GHZ 16373 5
15 7.6 GHZ 21934 6

Distribution Graph at Time-50

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (c
yc

le
 R

eq
ui

re
d)

Fig 4: Distribution Graph-2

Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 15

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

 III. Simulation Status at Time-100

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 1541 1
3 1 GHZ 2645 3
4 1.6 GHZ 4447 5
5 2.2 GHZ 7349 6
6 2.7 GHZ 9212 7
7 3.2 GHZ 10528 8
8 3.7 GHZ 13112 8
9 4.2 GHZ 13115 8
10 4.8 GHZ 19206 8
11 5.4 GHZ 19637 9
12 6 GHZ 21223 9
13 6.5 GHZ 22676 9
14 7 GHZ 24660 9
15 7.6 GHZ 29891 10

Distribution Graph at Time-100

0
5000

10000
15000

20000
25000

30000
35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

L
oa

d
(C

yc
le

s R
eq

ui
re

d)

Fig 5: Distribution Graph-3

 IV. Simulation Status at Time-150

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 1589 3
3 1 GHZ 4106 6
4 1.6 GHZ 6786 7
5 2.2 GHZ 10578 10
6 2.7 GHZ 14441 10
7 3.2 GHZ 16559 12
8 3.7 GHZ 17135 12
9 4.2 GHZ 22462 12
10 4.8 GHZ 24219 11
11 5.4 GHZ 26412 13
12 6 GHZ 29901 13
13 6.5 GHZ 35616 13
14 7 GHZ 38548 14
15 7.6 GHZ 38671 14

Distribution Graph at Time-150

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (C
yc

le
 R

eq
ui

re
d)

Fig 6: Distribution Graph-4

 V. Simulation Status at Time-200

Distribution Graph at Time-200

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (C
yc

le
 R

eq
ui

re
d)

Fig 7: Distribution Graph-5

 VI. Simulation Status at Time-350
Sr. No. Frequency Overall Load

cycle
No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 3905 13
3 1 GHZ 9288 17
4 1.6 GHZ 15211 22
5 2.2 GHZ 20150 22
6 2.7 GHZ 24562 25
7 3.2 GHZ 29998 24
8 3.7 GHZ 38082 26
9 4.2 GHZ 41231 26
10 4.8 GHZ 46142 26
11 5.4 GHZ 56102 29
12 6 GHZ 61380 28
13 6.5 GHZ 65039 30
14 7 GHZ 68997 30
15 7.6 GHZ 75415 32

Distribution Graph at Time-350

0
10000
20000
30000
40000
50000
60000
70000
80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (C
yc

le
 R

eq
ui

re
d)

Series1

Fig 8: Distribution Graph-6

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 0 0
2 500 MHZ 2338 6
3 1 GHZ 4837 8
4 1.6 GHZ 8479 10
5 2.2 GHZ 14451 13
6 2.7 GHZ 15774 14
7 3.2 GHZ 20942 15
8 3.7 GHZ 24303 16
9 4.2 GHZ 27901 16
10 4.8 GHZ 29235 14
11 5.4 GHZ 34093 18
12 6 GHZ 40245 17
13 6.5 GHZ 43800 17
14 7 GHZ 47216 18
15 7.6 GHZ 47807 18

Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 16

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

 VII. Simulation Status at Time-475

Sr. No. Frequency Overall Load
cycle

No. of Jobs

1 100 MHZ 1008 2
2 500 MHZ 5180 18
3 1 GHZ 11734 24
4 1.6 GHZ 19068 30
5 2.2 GHZ 26299 29
6 2.7 GHZ 33205 35
7 3.2 GHZ 38596 30
8 3.7 GHZ 44916 35
9 4.2 GHZ 52419 34
10 4.8 GHZ 61733 37
11 5.4 GHZ 67476 36
12 6 GHZ 75755 39
13 6.5 GHZ 85278 41
14 7 GHZ 89914 42
15 7.6 GHZ 98199 43

Distribution Graph at Time-475

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Type

Lo
ad

 (C
yc

le
 R

eq
ui

re
d)

Fig 9: Distribution Graph-7

VIII. CONCLUSION & FUTURE WORK
 Results concluded so far incorporates asynchronously
arranged heterogeneous processors by taking long duration
execution samples illustrates from the very beginning load is
unstable but as the simulation proceeds further, increased
improvement over distribution is the result, this is because
initially from the very beginning the processor are lightly
loaded and stableness and unstableness will be best described
when system revolves around heavy load, only then load
stability metrics will be measured and justified This method
of load distribution performs balanced load assignment
without requiring task adjustment efforts. Very long run

execution of simulation provides a way to characterize
workload consistently. Processor frequency a great factor
against load balancing around heterogeneous multiprocessor
interconnection. Randomly task workload is generated
containing burst cycles are then computed with frequency
metric and distributed. Further the future work may
incorporate other dynamic factors like FLOPS (floating point
operations per second), MIPS (million instructions per
seconds) these all are dependent upon the processor
frequency of execution. Each processor has varying
execution speed which in turn leads to execution of varying
no. of instructions per second. Such types of dynamic factor
for workload characterization will results in increased
performance and throughput

IX. REFERENCES
[1] Bobrek A., Paul M. IEEE Stochastic Contention for

Single-Chip Heterogeneous Multiprocessor. Vol. 59, pp.
1402-1418 ,Oct 2010

[2] Arora, S., Arora, A. Scheduling simulations: An experimental
approach to time-sharing multiprocessor scheduling schemes.
Foundation of Computer Science New York. vol. 63, pp.
29-35, feb 2013.

[3] Marc, H. Lemair, W.. Strategies for load balancing for highly
parallel computers IEEE transactions on parallel and
distributed systems Vol. 4, pp. 979-993, Sep.1993

[4] Jacques, M. and Couturier, R. IEEE, Sylvain Contassot-Vivier,
Member, Dynamic Load Balancing and Efficient Load
Estimators for Asynchronous Iterative Algorithms vol. 16, pp.
289-299, Apr 2005

[5] Chhabra, A. and Singh, G. Simulated Performance Analysis of
Multiprocessor Dynamic Space-Sharing Scheduling policy vol.
9, pp. 326-329, 2009

[6] Cybenko, G. 1989. Dynamic load balancing for distributed
memory multi-processor Department of Computer Science,
Tufts University, Medford, Massachusetts. vol. 7 pp. 279-301,
Feb 1989

[7] Mendel R, Complete Computer System Simulation:The SimOS
approach IEEE Parallel and Distributed Computing pp. 34-43,
1995

[8] Rudloph L, A Simple Load Balancing scheme for task allocation
in Parallel Machines ACM, pp. 237-245, 1995

Harpreet Kaur, Ankit Arora, Gursharanjit Cheema 17

International Journal of Scientific Research in Computer Science (IJSRCS) Vol. 1, Issue. 4, Nov. 2013

Fig 10: Simulated view

