
Nandigam Suresh and Layam Prasad 23

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISN: 2320-9569) Vol. 10, Issue. 7, Aug. 2014

A Synthesizable Design of AMBA-AXI Protocol
for SoC Integration

1.Nandigam Suresh(M.Tech),2.Layam Prasad(Ph.D)(MISTE),3Challa VenugopalReddy.
1.M.Tech II.Year In ECE Dept,RISE Prakasam Group Of

Institutions,Ongole,nandigamsuresh806@gmail.com.
2.Professor In ECE Dept,RISE Prakasam Group Of Institutions,Ongole,prasadlayam@gmail.com

3.Pofessor In ECE Dept,Priyadarshini College of Engineering and
Technology,Nellore,venugopalreddy.sai@gmail.com

Abstract—System-on-a-Chip (SoC) design has become more and
more complexly. Because difference functions components or IPs
(Intellectual Property) will be integrated within a chip. The
challenge of integration is “how to verify on-chip communication
properties”. Although traditional simulation-based on-chip bus
protocol checking bus signals to obey bus transaction behavior or
not, however, they are still lack of a chip-level dynamic
verification to assist hardware debugging. We proposed a
rulebased synthesizable AMBA AXI protocol checker. The AXI
protocol checker contains 44 rules to check on-chip
communication properties accuracy. In the verification strategy,
we use the Model sim to verify AXI protocol checker.

Keywords: AMBA AXI ,Verilog ,VLSI,FPGA

I. INTRODUCTION
In recent years, the improvement of the

semiconductor process technology and the market
requirement increasing. More difference functions IPs are
integrated within a chip. Maybe each IPs had completed
design and verification. But the integration of all IPs could
not work together. The more common problem is violation
bus protocol or transaction error. The bus-based architecture
has become the major integrated methodology for
implementing a SoC. The on-chip communication
specification provides a standard interface that facilitates IPs
integration and easily communicates with each IPs in a SoC.
The semiconductor process technology is changing at a
faster pace during 1971 semiconductor process technology
was 10μm, during 2010 the technology is reduced to 32nm
and future is promising for a process technology with 10nm.
Intel, Toshiba and Samsung have reported that the process
technology would be further reduced to 10nm in the future.
So with decreasing process technology and increasing
consumer design constraints SoC has evolved, where all the
functional units of a system are modelled on a single chip.

To speed up SoC integration and promote IP reuse,
several bus-based communication architecture standards
have emerged over the past several years. Since the early
1990s, several onchip bus-based communication
architecture standards have been proposed to handle the
communication needs of emerging SoC design. Some of the
popular standards include ARM Microcontroller Bus
Architecture (AMBA) versions 2.0 and 3.0, IBM Core
Connect, STMicroelectronics STBus, Sonics SMARRT
Interconnect, Open Cores Wishbone, and Altera Avalon[1].
On the other hand, the designers just integrate their owned
IPs with third party IPs into the SoC to significantly reduce
design cycles. However, the main issue is that how to

efficiently make sure the IP functionality, that works
correctly after integrating to the corresponding bus
architecture.

There are many verification works based on formal
verification techniques [2]-[6]. Device under test (DUT) is
modeled as finite-state transition and its properties are
written by using computation tree logic (CTL) [7], and then
using the verification tools is to verify DUT’s behaviors [8]-
[10]. Although formal verification can verify DUT’s
behaviors thoroughly, but here are still unpredictable bug in
the chiplevel, which we want to verify them.

The benefits of using rule-based design include
improving observability, reducing debug time, improving
integration through correct usage checking, and improving
communication through documentation. In the final purpose,
increasing design quality while reducing the time-to-market
and verification costs [19]. We anticipate that the AMBA
AXI protocol checking technique will be more and more
important in the future. Hence, we propose a synthesizable
AMBA AXI protocol checker with an efficient verification
mechanism based on rule checking methodology. There are
44 rules to check the AMBA AXI protocol that provide AXI
master, slave, and default slave protocol issues.
A.AMBA AXI architecture:

AMBA AXI [3] supports data transfers up to 256
beats and unaligned data transfers using byte strobes. In
AMBA AXI4 system 16 masters and 16 slaves are
interfaced. Each master and slave has their own 4 bit ID
tags. AMBA AXI system consists of master, slave and bus
(arbiters and decoders). The system consists of five channels
namely write address channel, write data channel, read data
channel, read address channel, and write response channel.
The AXI4
protocol supports the following mechanisms:
 Unaligned data transfers and up-dated write

response requirements.
 Variable-length bursts, from 1 to 16 data transfers

per burst.
 A burst with a transfer size of 8, 16, 32, 64, 128,

256, 512 or 1024 bits wide is supported.
 Updated AWCACHE and ARCACHE signaling

details
Each transaction is burst-based which has address and

control information on the address channel that describes the
nature of the data to be transferred. The data is transferred
between master and slave using a write data channel to the
slave or a read data channel to the master. Table 1[3] gives



Nandigam Suresh and Layam Prasad 24

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISN: 2320-9569) Vol. 10, Issue. 7, Aug. 2014

the information of signals used in the complete design of the
protocol.

The write operation process starts when the master
sends an address and control information on the write
address channel as shown in fig. 1. The master then sends
each item of write data over the write data channel. The
master keeps the VALID signal low until the write data is
available. The master sends the last data item, the WLAST
signal goes HIGH.

Figure 1: Write address and data burst.

Figure 2: Read address and data burst.

TABLE 1: Signal descriptions of AMBA AXI4 protocol.

When the slave has accepted all the data items, it drives
a write response signal BRESP[1:0] back to the master to
indicate that the write transaction is complete. This signal
indicates the status of the write transaction. The allowable
responses are OKAY, EXOKAY, SLVERR, and DECERR.
After the read address appears on the address bus, the data
transfer occurs on the read data channel as shown in fig. 2.
The slave keeps the VALID signal LOW until the read data
is available. For the final data transfer of the burst, the slave
asserts the RLAST signal to show that the last data item is
being transferred. The RRESP[1:0] signal indicates the
status of the read transfer. The allowable responses are
OKAY, EXOKAY, SLVERR, and DECERR.

The protocol supports 16 outstanding transactions,
so each read and write transactions have ARID[3:0] and
AWID [3:0] tags respectively. Once the read and write
operation gets completed the module produces a RID[3:0]
and BID[3:0] tags. If both the ID tags match, it indicates
that the module has responded to right operation of ID tags.
ID tags are needed for any operation because for each
transaction concatenated input values are passed to module



Nandigam Suresh and Layam Prasad 25

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISN: 2320-9569) Vol. 10, Issue. 7, Aug. 2014

II. Comparison of AMBA AXI3 and AXI4
AMBA AXI3 protocol has separate address/control and data
phases, but AXI4 has updated write response requirements
and updated AWCACHE and ARCACHE signaling details.
AMBA AXI4 protocol supports for burst
lengths up to 256 beats and Quality of Service (QoS)
signaling. AXI has additional information on Ordering
requirements and details of optional user signaling. AXI has
the ability to issue multiple outstanding addresses and out-
oforder transaction completion, but AXI has the ability of
removal of locked transactions and write interleaving. One
major up-dation seen in AXI is that, it includes information
on the use of default signaling and discusses the
interoperability of components which can’t be seen in AXI3.

In this paper features of AMBA AXI listed above
are designed and verified. The rest of the paper is organized
as follows: Section 2 discusses related work. Section 3 of
this paper, discusses proposed work. In Section 4,
simulation parameters are discussed. Section 5 discusses
results. Future scope and concluding remarks are given in
Section 6.

AMBA 3.0 AXI AMBA 2.0 AHB

Channel-based specification,
with five separate channels
for read address, read data,
writes address, write data,
and write response enabling
flexibility in implementation

Explicit bus-based
specification, with
single shared address
bus and separate read
and write data buses.

Burst mode requires
transmitting address of only
first data item on the bus.

Requires transmitting
address of every data
item transmitted on the
bus.

Out-of-Order ransaction
completion provides native
support for multiple,
outstanding ransactions.

Simpler SPLIT
transaction scheme
provides limited and
rudimentary outstanding
transaction completion

Fixed burst mode for
memory mapped I/O
peripherals.

No fixed burst mode.

Advanced security and
cache hint support.

Simple protection and
cache hint support.

Native low-power clock
control interface.

No low-power interface.

Default bus matrix topology
support.

Default hierarchical bus
topology support

III. RELATED WORK
In a SoC, it houses many components and

electronic modules, to interconnect these a bus is necessary.
There are many buses introduced in the due course some of
them being AMBA [2] developed by ARM, CORE
CONNECT [4] developed by IBM, WISHBONE [5]
developed by Silicore Corporation, etc. Different buses have
their own properties the designer selects the bus best suited
for his application. The AMBA bus was introduced by ARM
Ltd in 1996 which is a registered trademark of ARM Ltd.
Later advanced system bus (ASB) and advanced peripheral

bus (APB) were released in 1995, AHB in 1999, and AXI in
2003[6]. AMBA bus finds application in wide area. AMBA
AXI bus is used to reduce the precharge time using dynamic
SDRAM access scheduler (DSAS) [7]. Here the memory
controller is capable of predicting future operations thus
throughput is improved. Efficient Bus Interface (EBI) [8] is
designed for mobile systems to reduce the required memory
to be transferred to the IP, through AMBA3 AXI. The
advantages of introducing Network-on-chip (NoC) within
SoC such as quality of signal, dynamic routing, and
communication links was discussed in [9]. To verify on-chip
communication properties rule based synthesizable AMBA
AXI protocol checker [10] is used.

1) Master
2) AMBA AXI4 Interconnect

2.1) Arbiters
2.2) Decoders

3) Slave
The master is connected to the interconnect using a

slave interface and the slave is connected to the interconnect
using a master interface as shown in fig. 3. The AXI4
master gets connected to the AXI4 slave interface port of the
interconnect and the AXI slave gets connected to the AXI4
Master interface port of the interconnect. The parallel
capability of this interconnects enables master M1 to access
one slave at the same as master M0 is accessing the other.

Figure 4: AMBA AXI slave Read/Write block Diagram

IV. SIMULATION

Simulation is being carried out on Model Sim Quretus
II[11] which is trademark of Menter Graphics, using Verilog
[12] as programming language. The test case is run for
multiple operations and the waveforms are visible in
discovery visualization environment

A. Simulation inputs
To perform multiple write and read operations, the

concatenated input format and their values passed to invoke
a function is shown in the fig. 6 and 7 respectively. Here the
normal type of the burst is passed to module. Internal_lock
value is 0, internal_burst value is 1 and internal_prot value
is 1,for both read and write operations, which indicate that
the burst is of normal type. For write operation address



Nandigam Suresh and Layam Prasad 26

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISN: 2320-9569) Vol. 10, Issue. 7, Aug. 2014

locations passed to module are 40, 12, 35, 42 and 102; for
read operations 45, 12, 67 and 98.
B . Simulation outputs

The simulation output signals generated are as follows:
 From input side the validating signals

AWVALID/ARVALID signals are generated by
interconnect which gives the information about
valid address and ID tags.

 For write operations BRESP[1:0] response signal
generated from slave indicates the status of the
write transaction. The allowable responses are
OKAY, EXOKAY, SLERR, and DECERR.

 For read operations RLAST signal is raised by
slave for every transaction which indicates the
completion of operation

V. RESULTS
Simulation is carried out in Modelsim tool and Verilog

is used as programming language.
A. Simulation result for write operation

The AResetn signal is active low. Master drives the
address, and the slave accepts it one cycle later. The write
address values passed to module are 40, 12, 35, 42 and 102
as shown in fig. 8 and the simulated result for single write
data operation is shown in fig. 9. Input AWID[3:0] value is
11 for 40 address location, which is same as the BID[3:0]
signal for 40 address location which is identification tag of
the write response. The BID[3:0] value is matching with the
AWID[3:0] value of the write transaction which indicates
the slave is responding correctly. BRESP[1:0] signal that is
write response signal from slave is 0 which indicates
OKAY. Simulation result of slave for multiple write data
operation is shown in fig. 10.

Fig 8: Simulation result of slave for write address operation

Fig9: Simulation result of slave for single write data
operation

Figure 10: Simulation result of slave for multiple write data
operation

B. Simulation result for read operation
The read address values passed to module are 45, 12,

67, 98 as shown in fig. 11 and the simulated result for single
read data operation is shown in fig. 12.

Figure 11: Simulation result of slave for read address
operation

Input ARID[3:0] value is 3 for 12 address location, which is
same as the RID[3:0] signal for 12 address location which is
identification tag of the write response. The RID[3:0] and
ARID[3:0] values are matching, which indicates slave has
responded properly.

Figure 12: Simulation result of slave for single read data
operation

VI. CONCLUSION AND FUTURE SCOPE



Nandigam Suresh and Layam Prasad 27

International Journal of Emerging Trends in Electrical and Electronics (IJETEE – ISN: 2320-9569) Vol. 10, Issue. 7, Aug. 2014

A. Future scope
The AMBA AXI4 has limitations with respect to

the burst data and beats of information to be transferred. The
burst must not cross the 4k boundary. Bursts longer than 16
beats are only supported for the INCR burst type. Both
WRAP and FIXED burst types remain constrained to a
maximum burst length of 16 beats. These are the drawbacks
of AMBA AXI system which need to be overcome.
B. Conclusion

AMBA AXI4 is a plug and play IP protocol
released by ARM, defines both bus specification and a
technology independent methodology for designing,
implementing and testing customized high-integration
embedded interfaces. The data to be read or written to the
slave is assumed to be given by the master and is read or
written to a particular address location of slave through
decoder. In this work, slave was modeled in Verilog with
operating frequency of 100MHz and simulation results were
shown in Modelsim tool. To perform single read operation it
consumed 160ns and for single write operation 565ns.
REFERENCES
[1] Shaila S Math, Manjula R B, “Survey of system on chip
buses based on industry standards”, Conference on
Evolutionary Trends in Information Technology(CETIT),
Bekgaum,Karnataka, India, pp. 52, May 2011
[2] ARM, AMBA Specifications ev2.0). [Online]. Available
at http://www.arm.com,
[3] ARM, AMBA AXI Protocol Specification (Rev 2.0).
[4] IBM, Core connect bus architecture. IBM
Microelectronics. [Online]. Available:
http://www.ibm.com/chips/products/coreconnect
[5] Silicore Corporation, Wishbone system-on-chip (soc)
interconnection architecture for portable ip cores,
[6] ARM, AMBA AXI protocol specifications, Available at,
http://www.arm.com, 2003
[7] Jun Zheng, Kang Sun , Xuezeng Pan, and Lingdi Ping
“Design of a Dynamic Memory Access Scheduler”, IEEE
transl, Vol 7, pp. 20-23, 2007
[8] Na Ra Yang, Gilsang Yoon, Jeonghwan Lee, Intae
Hwang, Cheol Hong Kim, Sung Woo Chung and Jong
Myon Kim, “Improving the System-on-a-Chip Performance
for Mobile Systems by Using Efficient Bus Interface”, IEEE
transl, International Conference on Communications and
Mobile Computing, Vol 4, pp. 606-608, March 2009


